3 research outputs found

    Overlearning in marginal distribution-based ICA: analysis and solutions

    Get PDF
    The present paper is written as a word of caution, with users of independent component analysis (ICA) in mind, to overlearning phenomena that are often observed.\\ We consider two types of overlearning, typical to high-order statistics based ICA. These algorithms can be seen to maximise the negentropy of the source estimates. The first kind of overlearning results in the generation of spike-like signals, if there are not enough samples in the data or there is a considerable amount of noise present. It is argued that, if the data has power spectrum characterised by 1/f1/f curve, we face a more severe problem, which cannot be solved inside the strict ICA model. This overlearning is better characterised by bumps instead of spikes. Both overlearning types are demonstrated in the case of artificial signals as well as magnetoencephalograms (MEG). Several methods are suggested to circumvent both types, either by making the estimation of the ICA model more robust or by including further modelling of the data

    Denoising source separation

    Get PDF
    A new algorithmic framework called denoising source separation (DSS) is introduced. The main benefit of this framework is that it allows for easy development of new source separation algorithms which are optimised for specific problems. In this framework, source separation algorithms are constucted around denoising procedures. The resulting algorithms can range from almost blind to highly specialised source separation algorithms. Both simple linear and more complex nonlinear or adaptive denoising schemes are considered. Some existing independent component analysis algorithms are reinterpreted within DSS framework and new, robust blind source separation algorithms are suggested. Although DSS algorithms need not be explicitly based on objective functions, there is often an implicit objective function that is optimised. The exact relation between the denoising procedure and the objective function is derived and a useful approximation of the objective function is presented. In the experimental section, various DSS schemes are applied extensively to artificial data, to real magnetoencephalograms and to simulated CDMA mobile network signals. Finally, various extensions to the proposed DSS algorithms are considered. These include nonlinear observation mappings, hierarchical models and overcomplete, nonorthogonal feature spaces. With these extensions, DSS appears to have relevance to many existing models of neural information processing

    Independent component approach to the analysis of EEG and MEG recordings

    Get PDF
    Multichannel recordings of the electromagnetic fields emerging from neural currents in the brain generate large amounts of data. Suitable feature extraction methods are, therefore, useful to facilitate the representation and interpretation of the data. Recently developed independent component analysis (ICA) has been shown to be an efficient tool for artifact identification and extraction from electroencephalographic (EEG) and magnetoen- cephalographic (MEG) recordings. In addition, ICA has been ap- plied to the analysis of brain signals evoked by sensory stimuli. This paper reviews our recent results in this field
    corecore